A Function Approximation Approach to Estimation of Policy Gradient for POMDP with Structured Policies
نویسنده
چکیده
We consider the estimation of the policy gradient in partially observable Markov decision processes (POMDP) with a special class of structured policies that are finite-state controllers. We show that the gradient estimation can be done in the Actor-Critic framework, by making the critic compute a “value” function that does not depend on the states of POMDP. This function is the conditional mean of the true value function that depends on the states. We show that the critic can be implemented using temporal difference (TD) methods with linear function approximations, and the analytical results on TD and Actor-Critic can be transfered to this case. Although Actor-Critic algorithms have been used extensively in Markov decision processes (MDP), up to now they have not been proposed for POMDP as an alternative to the earlier proposal GPOMDP algorithm, an actor-only method. Furthermore, we show that the same idea applies to semiMarkov problems with a subset of finite-state controllers.
منابع مشابه
A POMDP Framework to Find Optimal Inspection and Maintenance Policies via Availability and Profit Maximization for Manufacturing Systems
Maintenance can be the factor of either increasing or decreasing system's availability, so it is valuable work to evaluate a maintenance policy from cost and availability point of view, simultaneously and according to decision maker's priorities. This study proposes a Partially Observable Markov Decision Process (POMDP) framework for a partially observable and stochastically deteriorating syste...
متن کاملPolicy Gradient With Value Function Approximation For Collective Multiagent Planning
Decentralized (PO)MDPs provide an expressive framework for sequential decision making in a multiagent system. Given their computational complexity, recent research has focused on tractable yet practical subclasses of Dec-POMDPs. We address such a subclass called CDec-POMDP where the collective behavior of a population of agents affects the joint-reward and environment dynamics. Our main contrib...
متن کاملPolicy Search via Density Estimation
We propose a new approach to the problem of searching a space of stochastic controllers for a Markov decision process (MDP) or a partially observable Markov decision process (POMDP). Following several other authors, our approach is based on searching in parameterized families of policies (for example, via gradient descent) to optimize solution quality. However, rather than trying to estimate th...
متن کاملInternal-State Policy-Gradient Algorithms for Partially Observable Markov Decision Processes
Policy-gradient algorithms are attractive as a scalable approach to learning approximate policies for controlling partially observable Markov decision processes (POMDPs). POMDPs can be used to model a wide variety of learning problems, from robot navigation to speech recognition to stock trading. The downside of this generality is that exact algorithms are computationally intractable, motivatin...
متن کاملPolicy Gradient Critics
We present Policy Gradient Actor-Critic (PGAC), a new model-free Reinforcement Learning (RL) method for creating limited-memory stochastic policies for Partially Observable Markov Decision Processes (POMDPs) that require long-term memories of past observations and actions. The approach involves estimating a policy gradient for an Actor through a Policy Gradient Critic which evaluates probabilit...
متن کامل